《科创板日报》9月6日(记者金小莫)经过去年一轮热炒后,AI+药物研发已在业内分化出两种观点:看好的人认为,就像互联网造车颠覆传统车企,基于人工智能、量子力学的“造药新势力”也将改变新药研发既有的游戏规则。
“传统CXO更多的是业务驱动,它的规模扩大依赖于研发人员的数量,所以说,CXO吃的是工程师人口红利;而AI+药物研发的底层逻辑就是用高效的虚拟算法取代实验试错,加上巨大算力、大量数据,能跳出药物科学家个人经验的局限。”一位行业人士称。
反方观点也鲜明。在《科创板日报》记者的调查中,一位Biotech的相关负责人即表示,“早在20多年前,我们就已经利用计算机来辅助药物发现了。现在,又冒出来许多AI概念。AI+药物发现,在未来5-10年内,看不到希望。”
许多投资者尚未厘清的是,AI+药物发现到底基于怎样的技术逻辑,其商业价值在哪里,带着这些问题,《科创板日报》记者展开采访。
制药新势力的崛起
年2月,任峰博士的一则履新消息一时在业内引发热议。当时,美迪西原高级副总裁兼药物研发服务负责人任峰博士转任英矽智能首席科学官,今年6月,他被晋升为英矽智能联合首席执行官——职业履历从传统CRO跨度到造药新势力。
作为一名有机化学博士,任峰似乎在用自己的实际行动为AI投票。这是不是体现了一种行业趋势?
在接受《科创板日报》记者采访时,任峰坦言称,加入英矽智能,一方面是出于个人情怀,“我之前主要是做传统的小分子药物研发,一直有做first-in-class药物的梦想,希望凭借自己在新药研发上的经验,更好地把人工智能和新药研发结合起来,加速创新药物研发。”任峰说。
另一方面,他看到了新的技术机会。
目前,小分子创新药物研发还存在诸多痛点,比如,药物开发中新颖的靶点少、化合物生成和设计耗费高时间长且太过依赖药化学家的经验、临床试验失败率很高等等,包括任峰在内的很多人相信,人工智能为这些痛点提供可期的解决方案。
基于这一思路,在一级市场上,造药新势力们率先崛起。
据冰鉴科技研究院数据,截至今年8月,仅在国内从事AI制药的初创企业就已达40余家。从融资轮来看,晶泰科技已完成多轮高额融资,系跑得最快的一家。另有百图生科、英飞智药、云深智药等三十余家仍在A轮阶段;
从药物研发结果来看,到年二季度,冰洲石生物、锐格医药、英矽智能和红云生物这四家企业研发的创新药物已获得中国国家药品监督管理局药品审评中心临床试验默示许可。标志着中国AI制药进入下一个关键阶段。
“参考互联网行业来看,它经过了好几轮的泡沫,最终分别在电商、社交、搜索这几个领域沉淀出龙头企业。在AI+药物研发领域也是这样。”晶泰科技联合创始人兼董事长温书豪对《科创板日报》记者称,大家都刚刚开始,良性的竞争有利于为整个药物产业注入源头活水,而且这个领域也足够大,仍然有很多值得做的事情,容得下多家公司。
AI如何与药物研发结合?进一步来看,AI之所以能够与药物研发相结合,这是因为,在逻辑上,二者有契合之处。
据晶泰科技对《科创板日报》记者的介绍,从本质上来说,小分子化学药与大分子的生物药,都是由原子、分子排列组合而成的,他们的结构与其对疾病相关靶点的活性和其他成药性质息息相关,需要通过实验试错来找到、优化出理想的物质结构,再通过动物模型验证,最终面临临床试验的终极大考。
传统的小分子药物研发,通过实验从已知分子库中穷举探索动辄上万个类药分子,并基于科学家的经验和见解进行设计优化、再实验验证,如此反复数轮,最终找到潜力药物。
耗时费钱的实验具有局限性,与科学家的个人经验、甚至运气一起,成为提高创新效率和成功率的瓶颈;而其中的筛选试错、设计优化等步骤,完全可以借助AI算法,以超高的效率和极低的成本来完成,从而将评估范围从传统实验的数千个分子,扩大到探索百万、千万个AI针对靶点生成的类药分子,并提高设计优化与实验验证的效率、成功率。
这也是AI+药物发现的基本逻辑。
“AI不是为了替代哪些工作而生的,而是更好的赋能药物研发的一些环节。比如,英矽智能主要